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Overview of the result

First characterizations of:

∗ equivariant networks to space of transformations with infinite
number of dimensions.

∗ the biggest possible set of transformations (Diffeomorphisms)
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Shape inputs

(a) 3D heart shape (b) Meshed shape (c) Directional shape

Goal : Compression of (directional) signals via a non-linear network M.
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Natural shape transformations

(a) Shape (b) Directional Shape
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Infinite mesh refinements

(a) Initial mesh (b) Barycenter refined mesh

In the limit, Diffeomorphisms describe natural shape transformations
∗ it is the biggest possible space of transformations
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What is equivariance?

Input OutputNETWORK

: transformation TT

Equivariance
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Why look for equivariant networks?

• Transformations on compressed shapes (e.g. helps
reconstruction)

• Inductive bias

• Reduce complexity of network
• Increases accuracy for task related to the tansformations (e.g.

invariance).
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Equivariance to translations

(a) Input image (b) ResNet output

CNN are equivariant to translations
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Restrictive result on shape diffeomorphism
equivariance

• Equivariant Networks to diffeomorphism on shapes are ponctual

non-linearities ρ : R → R

Scalar
function

f

Compressed
Saclar function

ρ(f )

ρ : R → R

ϕϕ ∈ Diff

Equivariance to Diff : Scalar case
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Restrictive result on directional shape diffeomorphism
equivariance

• Equivariant Networks to diffeomorphism on directional shapes

are multiplications by a constant λ ∈ R

Vector
function

V

Compressed
Scalar function
λV

λ ∈ R

ϕϕ ∈ Diff

Equivariance to Diff : Vector case

Sergeant-Perthuis (Inria) Diff−Equivariant operators NeurIPS2022 10 / 12



Conclusion: limitations of deep learning for shape
analysis

We showed that there are no straightforward ‘good’ deep learning
networks for shape analysis.
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